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Abstract In this work, we present the state of the art in the

use of theory (first principles, molecular dynamics, and

statistical methods) for interpreting and understanding the

infrared (vibrational) absorption and Raman scattering

spectra. It is discussed how they can be used in combination

with purely experimental studies to generate infrared and

Raman images of biomolecules in biologically relevant

solutions, including fluids, cells, and both healthy and dis-

eased tissue. The species and conformers of the individual

biomolecules are in many cases not stable structures,

species, or conformers in the isolated state or in non-polar

non-strongly interacting solvents. Hence, it is better to think

of the collective behavior of the system. The collective

interaction is not the simple sum of the individual parts.

Here, we will show that this is also not true for the infrared

and Raman spectra and images and that the models used

must take this into account. Hence, the use of statistical

methods to interpret and understand the infrared and Raman

spectra and images from biological tissues, cells, parts of

cells, fluids, and even whole organism should change

accordingly. As the species, conformers and structures of

biomolecules are very sensitive to their environment and

aggregation state, the combined use of infrared and Raman

spectroscopy and imaging and theoretical simulations are

clearly fields, which can benefit from their joint and mutual

development.
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Abbreviations

KS-DFT Kohn–Sham density functional theory

PCA Principal component analysis

LDA Linear discriminant analysis

APT Atomic polar tensor

VA Vibrational absorption

IR Infrared

RS Raman scattering
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1 Introduction

The first IR (infrared) spectra were measured using dis-

persive instruments, glow bar sources, and MCT (Mercury

Cadmium Telluride) detectors [1]. On the other hand, early

Raman measurements used conventional light sources, and

the technique was not really widely used until the devel-

opment of lasers. Due to the wavelength dependence of the

Raman scattering, one would in many cases like to use the

shortest wavelength possible. Early Raman instruments

were dispersive and used visible lasers, for example, the Ar

ion laser at 488 nm and the Nd:YAG laser at 532 nm. For

many samples, these sources are fine, but for many bio-

logical and organic samples, there is a large fluorescence

when one uses these lasers sources, so one can either go to

even shorter wavelengths, into the UV or vacuum UV, or

go to higher wavelength, for example, to use the 785 and

1,064 nm laser sources. In addition to the use of sources

that do not give fluorescence, Fourier transform (FT)

technology has been used.

With the development of more sensitive detectors and

the reduced cost, one has been able to develop infrared and

Raman imaging instruments. Here, one can measure the

infrared and Raman spectra for large areas, for example,

surfaces or heterogenous samples. As the technology has

developed, so has the breadth of the applications. Initially,

infrared and Raman instruments were only found in physics

and physical and analytical chemistry laboratories. Spec-

troscopists needed optics, electrical engineering, and also

quantum mechanics to be able to use the instruments and

understand the first principles theory required to understand

the bands, both frequencies and intensities that one mea-

sured in the laboratory. Initially, the harmonic approxi-

mation was used, both for the frequency and the infrared

absorption intensities. But when the experimental spectra

showed more bands than predicted within the harmonic

approximation, terms like non-harmonic and Fermi reso-

nance effects were used. Very few experimental vibrational

spectroscopists understood the mathematics and theory for

these so-called anharmonic effects. This was in large part

due to the complexity of the mathematics and physics and

the way the theory developed. In the early days of vibra-

tional spectroscopy, one did not have computers and

computer programs as developed as one has now. Also, the

computer groups gave numbers that were less reliable than

those one could ‘‘derive’’ from the experimental data. This

is similar to what can now be done with many complex

experimental data, where the ad hoc and empirical theories

are quite well in describing the so-called underlying effects

of the principal components.

Early in the developments of these spectroscopic

methods, researchers collected a wealth of information. But

due to the complex nature of the mathematics, it has been

very hard to extract the information from the spectra

directly. This is due to the fact the experimental observ-

ables/measurables are not the simple quantities of interest

initially to the experimental scientists and chemist, i.e.,

bond lengths, valence angles, dihedral angles, specific

atomic intermolecular distances, binding energies and even

relative energies between the large number of possible

chemical species with the same chemical formula, for

example, C2H6O: ethanol and dimethylether. In the case of

both infrared and Raman spectroscopy, one can distinguish

between these two chemical entities (if one knows one has

either one of them, that is, one can make the binary deci-

sion: 0 ethanol or 1 dimethylether) by measuring either the

‘‘vibrational absorption (VA) or Raman scattering’’ spectra

for the ‘‘alcohol’’ or ‘‘ether’’ functional groups. Hence,

there is large body of literature in both the VA and Raman

literature on frequencies for various functional groups.

Indeed in many papers on infrared/VA and Raman spec-

troscopy of cells and tissues one sees these tables repro-

duced to document and ‘‘assign’’ the bands ‘‘identified’’ by

principle component analysis as the determiners (also

called biomarkers) of various diseased states: cancer,

malignant or healthy cells. But this is a very simplistic and

not very useful interpretation and understanding as the

functional groups are in many cases very generic and do

not relate specifically to the biological function or dys-

function which is more important.

To get the level of understanding that is required for the

field of molecular medicine to fully develop and interpret,

one will need to be able to be a ‘‘bit’’ more specific. For

example, to which specific functional group in which

specific molecule or molecular complex are the bands in

the spectra that have been identified by statistical methods

due (to). And then, why? Is it due to a genetic mutation or

is ‘‘simply’’ due to the exposure of the organism and/or

molecule to (1) damaging radiation, or (2) a denaturing

chemical (so-called carcinogen) which may then induce

changes that though not at the DNA level, do affect bio-

logical processes, including DNA replication and gene

transcription and translation. Finally, in many cases,

changes may be induced by an invading organism, bacteria,

the symptoms of which are similar to other ‘‘natural’’

occurring diseases of sometimes unknown origin. For

example, Lyme disease has symptoms that are confused

with arthritis and sometimes are failed to be diagnosed. In

the meantime, the patient is not given the right treatment.

The list can be very long.

As an example of diseases, colorectal cancer is a major

public health problem, being the third most common can-

cer and the fourth leading cause of cancer deaths world-

wide. Based on demographic trends of annual incidence, it

is likely to increase approximately 80% (2.2 million new

cases) over the next two decades, occurring especially in
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less developed regions (62%) [2]. According to estimates

from the American Cancer Society, 101,700 new cases of

colon cancer and 39,510 cases of rectal cancer are expected

to occur in 2011 [3, 4]. Thus, there is consensus that the

control of colorectal cancer is crucial and of global sig-

nificance, being based on a balance between prevention,

diagnosis, and treatment [2].

Colorectal cancer is usually asymptomatic and is often

diagnosed late, being detected after the occurrence of

symptoms. Thus, a preliminary screening, which involves

removal of polyps or tumors, is necessary in order to

identify it early and thus significantly increase the chance

of cure and hence survival [3, 4]. Three variables of

colorectal lesions are known: non-neoplastic polyps, ade-

nomatous polyps, and cancers or neoplastic polyps them-

selves. Polyp is defined as any mass that is projected onto

the surface of normal mucosa. The non-neoplastic polyps

are not generally considered precursors of cancer, but the

polyps have great clinical importance, since they have a

high probability of becoming malignant.

The procedures conventionally used for early detection

of colorectal cancer are the following: examination of fecal

occult blood test (FOBT), sigmoidoscopy, colonoscopy,

double-contrast barium enema (DCBE), digital rectal

examination (DRE, digital rectal) and biopsy surgery for

histopathology, which is considered the gold standard for

the diagnosis and classification of disease [5]. This analysis

is an assessment of biopsy material using histological

staining techniques that are traditional. However, the

technique of traditional histology remains subjective,

where significant problems that include missed lesions and

unsatisfactory levels of inter- and intra-rater/observer

agreement/reproducibility, are often found [6]. Thus, there

is a need to develop diagnostic technologies that are sim-

ple, objective, and sensitive [7].

The optical techniques have been studied extensively as

a proposal for the diagnosis of cancer, because instead of

using an approach based on morphological changes, as

currently occurs in histopathological studies [7], the anal-

ysis is automated and relies on the detection of biochemical

changes that occur in tumor tissues [8]. One of the optical

spectroscopy techniques that can effectively provide

information concerning the structure and chemical com-

position of biological materials at the molecular level is

Fourier transform infrared spectroscopy (FTIR).

Analysis by FTIR imaging has several advantages over

conventional histology [6]. Among them, one is that it does

not require the application or the use of dyes or other

chemicals for obtaining the image, since the image is

generated directly from the measured vibrational spectra of

the unstained tissue samples. Here, the sample preparation

procedures and possible changes in cellular constituents

such as proteins, nucleic acids, and lipids are minimized.

The biggest advantage of this technique is the high sensi-

tivity combined with molecular spatial resolution of a few

micrometers. One can analyze samples without pre-treat-

ment, enabling identification [9], and the precise bio-

chemical makeup/composition of both healthy areas and

tumors [10]. Studies have demonstrated the potential of this

technique particularly to differentiate normal from diseased

tissues, completely removing the subjectivity and estab-

lishing itself as an invariant and reproducible technique [6].

Thus, combining the FTIR spectroscopy/imaging and his-

topathology is a way to strengthen the capabilities of both

techniques. The advantages of an FTIR (and/or Raman)

histopathological imaging method(s) would be an objec-

tive, easily applied, and observer independent method

based on knowledge based image generation routines,

similar to those which now exist for generating magnetic

resonance imaging (MRI) and x-ray images [6].

Given the need to apply the technique of FTIR imaging

to large data sets, it is important to obtain criteria for dif-

ferentiation that are reasonable and flexible [11]. This can

be achieved by the use of multivariate supervised classifi-

cation strategies, for example, multilayer perceptron artifi-

cal neural networks (MLPANNs). These are the techniques

of choice for developing robust and effective classifiers of

infrared data which depends on and reflects the biochemical

structure and composition of the tissue. These techniques

can be efficiently monitored and optimized by pre-selecting

the appropriate features from the spectral data. In their

studies, Lasch et al. [11] applied the techniques of artificial

neural networks as supervised techniques for obtaining

FTIR images and demonstrated the applicability of this

method for generating FTIR images from the histological

data and the arrays of FTIR spectra. The FTIR microspec-

trometer was used to measure and store sets of hyperspectral

data from human colorectal adenocarcinomas and build a

database of spatially resolved spectral data. This database

was composed of spectra data from 28 patients and 12

samples of different histological structures. The spectral

information contained in the database was used to train and

validate models of MLP-ANN. These classification models

were used for data analysis and to produce color images of

tissue from full FTIR spectral maps. An important aspect of

this study was to demonstrate the sensitivity and specificity

can be optimized in particular. The definition of topology of

artificial neural network (ANN) was crucial to achieve a

high degree of correspondence between the gold standard of

histopathology and infrared spectroscopy. In particular, a

hierarchical scheme of classification ANN proved to be

superior to the classification of tissue spectra, as was con-

cluded from the analysis of data, although the unsupervised

clustering methods, specifically hierarchical cluster analysis

(HCA), were useful in the early stages of model generation.

They concluded that better results of classification can be
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achieved if the class definitions of ANN are performed

considering the classification information provided by

cluster analysis [11–13].

Krafft et al. [12] made a comparative study of Raman

and FTIR imaging on colon tissue. The goal of the com-

bined application of FTIR and Raman imaging was to

compare, complement, and to confirm the results. Four

main groups of tissues were analyzed: muscle, connective,

epithelial, and nerve cells. The Raman and FTIR micro-

scopic images covered mucus, mucosa, submucosa and

longitudinal and circular muscle layers. Raman images of

three nuclei belonging to the mesenteric plexus were also

analyzed. The results were discussed with respect to lateral

resolution, spectral resolution, acquisition time and sensi-

tivity of both modalities. The separation of Raman and

FTIR microscopic images in clusters were very coinci-

dental, despite fundamental differences in both modalities.

The authors claim that this coincidence may be due to

similar spectral changes that were found in some spectra.

However, the divergence that occurred at the subcellular

level and in the transitions between tissues was due to the

lower lateral resolution inherent in infrared spectroscopy.

The connective tissue, smooth muscle, epithelial tissue,

glands, and mucous glands were distinguished by both

infrared and Raman spectra. From these results, the authors

concluded that the main advantages of FTIR imaging were

lower acquisition times and better spectral quality, whereas

Raman gives higher lateral and spectral resolutions.

Given the advantages of optical spectroscopy and the

possible role that this technique will play in the near future

in the medical clinic, this study aimed to correlate the dif-

ferent morphological structures with the corresponding

biochemical images of normal colorectal tissue, adenoma-

tous and adenocarcinoma obtained by infrared imaging.

2 Methods

2.1 Sample preparation

In this study, 12 samples of human colorectal tissue of

patients undergoing colonoscopy or surgical resection in

Gastrocentro and Surgical Center, Hospital of the Univer-

sity of Campinas, SP, were used. Of the 12 samples, 4 were

normal, 1 tubular adenoma, 3 hyperplastic adenomas, and 4

moderately differentiated adenocarcinomas. This study

followed the guidelines and rules for research involving

human subjects according to Resolution 196/96 of the

National Health Council and was approved by the Ethics

Committee of the School of Medical Sciences, State Uni-

versity of Campinas Protocol H083/CEP/2009.

The sectioning of colorectal tissue samples was per-

formed in Cryostat (Leica CM 1100) at -23 �C. Tissue

Freezing Medium (Leica Instruments GmbH, Nussloch,

Germany) was applied to the samples in order to fix the

same on the cutting table. The samples were then placed,

and cuts of 12 lm were performed.

Several serial sections were obtained for each sample.

The first section of the pair, with 12 micrometers, was

positioned over a window of 5 mm (mm) thickness of

Calcium Fluoride (CaF2) for FTIR spectroscopic analysis

and the subsequent section, of the corresponding pair, was

placed on slides for conventional histological character-

ization by hematoxylin and eosin (HE) staining. The slides

were stained using the standard protocol by HE staining

and then analyzed with the aim of identifying and classi-

fying the structures present in tissue samples from normal,

adenomatous and adenocarcinoma.

2.2 FTIR data collection

The biochemical images were obtained in transmittance

mode by using the FTIR imaging microscope (Spotlight

400—Perkin-Elmer) equipped with MCT detector (Mer-

cury Cadmium Telluride), operating at liquid nitrogen

temperature and coupled to a FTIR spectrometer (Spectrum

400—Perkin-Elmer). The images were obtained in the

range of 4,000–900 cm-1 with 32 scans per pixel

(6.25 lm2) and a resolution of 4 cm-1.

After the spectra for the tissues samples were measured

and stored, the spectral data files were imported into the

program Cytospec� for spectral analysis and generation of

the infrared images.

2.3 Data processing

The average spectra of each region were obtained using the

software Cytospec� (version 1.4.02). A spectral quality test

was performed to remove the spectra recorded in areas

where there was no tissue, or which had a low signal to

noise ratio. All spectra were submitted to a thickness test,

and the maximum/minimum intensity in the spectral range

from 1,700 to 1600 cm-1 was also used as the criterion. We

excluded regions where the maximum absorption was

greater than 1 (indicating a very thick sample), and where

the minimum absorption was less than 0.2 (indicating a

very thin sample).

An additional important problem/item which needs to be

controlled and/or taken into account is the effect due to the

absorption of atmospheric water (H2O) and carbon dioxide

(CO2). One can purge the chamber with either dry nitrogen

or dry air, or be very careful in using the regions where

both water vapor and carbon dioxide absorb strongly in the

infrared: 3,950 to 3,350 cm-1 and 1,900 to 1,300 cm-1

(H2O) and 2,400 and 2,300 cm-1 (CO2). One normally can

also run a background spectrum under the same conditions
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as one measures the spectrum of the sample, and then adjust

for atmospheric water and carbon dioxide. The spectra

which underwent the thickness tests and adjustments for

water vapor and carbon dioxide subsequently underwent

two further procedures: 9 point Savitsky Golay smoothing

and subsequent first derivative calculation followed by

vector normalization in the region from 4000 to 900 cm-1.

The first procedure produces a better identification mini-

mizing the variability of the baseline, while the latter

reduces the influence of intensity variations caused by dif-

ferences in cell density (which indicates that the cellular

constituents are more or less compact) and tissue thickness,

therefore, to exclude differences in thickness of the sample.

To perform the calculation of distance matrix, the data

were statistically analyzed using cluster analysis where two

spectral regions were selected: 3,000–2,800 and 1,450–

950 cm-1. This calculation was applied in order to graph-

ically view the proximity between the biochemical samples.

The application of Pearson’s correlation coefficient was

then performed as a first step for statistical analysis.

After applying the Pearson’s correlation coefficient, the

scaling first range and Ward’s algorithm were applied. This

algorithm minimizes the heterogeneity between the ele-

ments of each group, thus building more homogeneous

groups, so they can minimize the variance within these

groups.

After this processing, the data were subjected to hier-

archical cluster analysis (HCA) in the spectral range of

950–1,750 cm-1 for the classification of groups of spectra

that are specific to each type of tissue. This is possible

through direct correlation of spectral images, constructed

from HCA analysis, with the morphological analysis of

histological slides. The spectra were divided into classes

that reproduce the histology of the tissue using this method.

Spectral data were analyzed by supervised test (Artificial

Neural Networks-ANN) through routine contained called

CytoSpec NeuroDeveloper 2.5 (Synthon GmbH, Heidel-

berg, Germany). While CytoSpec is a software package

designed specifically for the generation of infrared images

from the mapping of large amounts of infrared data, the

software combines NeuroDeveloper modules for selection of

spectral characteristics as the development model ANN

classification model [11]. Based on neural networks, the

interface can be used to re-mount images from an original

data set of Cytospec. After this step of pre-processing of data,

images were correlated with images of histological slides.

2.4 Neural network techniques

The special ability of the ANN methods [14] is to correlate

and classify input data with output data through a carefully

arranged training that can either be supervised or unsu-

pervised [15]. The ANN used for the present type of

problem are multi-layered feed forward perceptron neural

networks [16]. In the following, the most common archi-

tecture of these networks is reviewed.

The basic elements of the ANN, the neurons, are pro-

cessing units that produce output from a characteristic,

non-linear function (often a sigmoidal function) of a

weighted sum of input data. The ANN network consists of

such processing units that can communicate with each

other through ‘‘synaptic’’ interconnections between the

neurons. The neuron elements are arranged in layers that

are connected vertically through these synaptic wires. The

first layer is receiving the input data, while the last pro-

cessing layer is producing output. In between are so-called

hidden layers of processing units with no direct commu-

nication to the outside.

The training process consists of presenting a set of

selected, non-homologous input data while adjusting the

variable interconnecting synaptic weights such that the

output neurons are producing the desired output values.

The network will through a set of training sessions, or

training cycles in which the training data are presented to

the network, gradually acquire a global information pro-

cessing where input data leads, through back propagation

error-correcting algorithms, to the output with minimal

errors compared to known data and corresponding input

data. After minimizing the error of the network output

compared to known output values, the network will even-

tually be able to generate new output from new input. In

our case, new infrared images are to be generated or chosen

from combinations of infrared spectra as input. Before the

construction of the training set, the data to be used were, as

explained before, subjected to hierarchical cluster analysis

(HCA) in a certain spectral range. This is done for making

a more sharp distinction in the classification of spectra that

are corresponding to specific types of tissue that are

homogeneous within one type.

Next, we give some formulas for the network architecture

and processing. If we denote a set of inputs by {xi} and the

corresponding set of outputs is denoted by {yi}, the pro-

cessing of each neuron i in the network can be described as

yi ¼ f
X

j

Wijxj þ gi

 !
;

where Wij are the adjustable weights of the synaptic

connections leading to the neuron i from the neuron j of the

proceeding layer, gi are the thresholds, and f is the non-

linear function for the neuron i. In the case of hidden

neuron layers the intermediate outputs yi are propagated

further to other layers through the above formula to

eventually become real outputs zi. The training process

consist, as explained earlier, of adjusting the weights Wij

and the thresholds gi so as to obtain final outputs zi with
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minimal errors from given inputs xi by a gradient decent

procedure [15]. The cost function, CF, is simply the

squared sum of errors formed from the difference between

the correct target values ti and the actual values from the

output neurons zi such that

CF ¼ 1=2
X

a;i

ta
i � za

i

� �2
:

It is important to do an assessment of the statistical

errors or the precision of the classification of the data used.

In the input data of absorption spectra, the precision is

roughly 10% corresponding to 1 over the number of peak

assignments, while in the output data of images, the

accuracy is given as 1 divided by the number of classes of

clearly different images which is again estimated to be

around 10%. In Figs 1, 2, and 3 the processing of FTIR

graphical data is shown in Figs. 1c, 2c, and 3c which

should be input to the ANN, and shown in Figs. 1d, 2d, and

3d as output from the network, ANN. The goal of the

network processing is seen here as a generalization of

graphical features. However, ANNs also have the ability to

distinguish useless noise from useful sparse data. The

usefulness is determined by what graphics (image)

produces the best classification during the training.

2.5 Theoretical

To calculate the infrared or Raman spectra of a molecule

requires one first to determine the so-called optimized

geometry of the isolated molecule. Depending on the

environment and/or medium for which one is measuring

one may or may not have to take the environment into

account. The environment can normally be neglected to

first order if the infrared and/or Raman measurements are

made for a molecule at low concentration in a non-polar

solvent, in an inert gas matrix (N2 or Ar) at low tempera-

ture, or in the gas phase. For non-hydrogen bonding sol-

vents and other solvent that do not strongly interact with

the solute molecule, one can use one of many so-called

continuum solvent models, the simplest of which is the

Onsager continuum model [17]. Here, one places the

molecule in a sphere with a dielectric constant. Improve-

ments to this model include the polarized continuum model

(PCM), the CPCM, and finally the COSMO model [18–20].

The latter takes the shape of the molecule into account and

includes higher order effects between the molecular and the

solvent. The Onsager model only includes the interaction

of the molecules electric dipole moment with the solvent

[17]. For molecules with no electric dipole moment, hence

there is no solvent/environmental effect. For a complete

review of continuum solvent models, the readers are

referred to the three Chemical Review, two by the Tomasi

group in Italy [19, 20], and the third by the Cramer group in

Minnesota [21]. For strongly interacting and/or hydrogen

bonding solvents like water, which can not only interact

with the solute, but actually stabilize species which are not

stable in non-polar solvents (the zwitterionic form of amino

acids), or conformers that are also not stable in non-polar

solvents [the PII conformer of the alanine dipeptide,

N-acetyl L-alanine N0-methylamide (NALANMA)], it is

imperative that one include minimally the solvent mole-

cules responsible for these fundamental ‘‘phase transi-

tions’’. For the L-alanine zwitterion (LAZ), it has been

shown that one should minimally include 4 water mole-

cules [22], and then one needs 20 to fully encapsulate the

LAZ [23]. For NALANMA, minimally 4 water molecules

are necessary [24], and for the L-histidine zwitterion, 6

water molecules are necessary [25]. For all other amino

acids and peptides, a good starting point is to mutate the

methyl side chain of either the LAZ or the PII conformer of

NALANMA to get the species of interest, and then hydrate/

solvate the amino acid residue, similar to the work of

Deplazes et al. [25] for L-histidine and of Jalkanen et al. for

N-acetyl L-histidine N0-methylamide (NALHNMA) [26,

27].

3 Results

Figures 1, 2, and 3 show the results of the analysis of three

tissue samples of normal colon, adenoma, and adenocar-

cinoma, respectively. Figure 1a corresponds to the slide

stained by HE the sample of normal mucosa. There is

clearly a regular structure of the glands (also called glan-

dular crypts) next to each other and occupying most of the

volume of the mucosa. These glands are composed of

columnar cells and goblet cells, indicating differentiation

into two cell types morphologically and functionally dis-

tinct. The glands consist of goblet cells with regular nuclei

in the shape, size, and number. In this figure, it is also be

observed epithelial tissue (surrounding the glands).

Figs. 1b and c show the sample in CaF2 window and image

biochemistry FTIR, respectively. Figure 1d refers to the

classification obtained by ANN. Figure 1e shows the pro-

cessed image obtained by HCA for the normal tissue and

Fig. 1f shows the average spectrum of each different region

discriminated in the image processed by the software

Cystospec obtained by HCA, showing the vibrational

bands of the chemical bonds within all the biochemical

components of cells (proteins, nucleic acids, carbohydrates,

and lipids). In the Table 1, we present the legend for the

color for (d). The image was colored in six colors, deter-

mined by the software Cytospec. Each of these colors

represents a structure that was identified and classified

according to their proportion of the amount (given in per-

centage) and is part of a database. Each color of the
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average FTIR in Fig. 1f represents a different structure

type as determined by HCA and compared with the his-

topathological analysis. In Fig. 1f, the light blue and dark

green refers to the lamina propria of the mucosa and

fibrovascular. The crypts are colored by red and magenta

represent the central lumen of the crypts. The outer layers

of cells of the crypts appear as gray and dark blue regions.

In Fig. 2, we present (a) Blade adenomatous tissue

stained by HE, (b) Sample in CaF2 window, (c) Biochem-

ical FTIR Image (d) Processed image obtained by artificial

neural network (ANN). Figure 2e represents the processed

image obtained by HCA and Fig. 2f the average spectra

obtained by HCA for colorectal adenoma tissues. Table 2

shows the identification and classification of the type of

Fig. 1 Comparison of the

infrared images for normal

colorectal tissue: a the Blade of

normal tissue stained by HE,

b sample in CaF2 window,

c biochemical image obtained

by FTIR, d processed image

obtained by artificial neural

network (ANN), e processed

image obtained by HCA, and

f the average spectra obtained

by HCA
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structure in the image obtained by ANN processing of the

FTIR spectra for colorectal adenoma tissue.

In Fig. 3a, we present the images for Blade adenocar-

cinoma tissue stained by HE, showing a disorganized

structure, atypical glands and with tumor infiltrating the

submucosa. There is decrease in intracellular mucin with

loss of differentiation into columnar cells. Figure 3b and c

show the sample in CaF2 window and biochemical FTIR

image, respectively. In Fig. 3d and Table 3 one sees the

results according to the classification obtained by ANN.

Figure 3e shows the processed image obtained by HCA for

adenocarcinoma tissues, and Fig. 3f shows the average

spectra obtained for HCA for colorectal adenocarcinoma

tissues.

Fig. 2 Comparison of the

infrared images for a the Blade

of adenoma tissue stained by

HE, b sample in CaF2 window,

c image obtained by

biochemical FTIR, d processed

image obtained by artificial

neutral network (ANN),

e processed image obtained by

HCA for colorectal adenoma

tissues, and f the average

spectra obtained by HCA
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4 Discussion

4.1 Histological architecture and histopathologic

colorectal

We begin the discussion with a brief review of the histo-

pathological characteristics of colon tissue. Subsequently,

clustering methods will be introduced, and the images

obtained by applying the method of grouping the data set

are compared to images of stained tissue. The cell adeno-

carcinomas are subsets of colorectal adenocarcinomas and

malignant colonocytes. These tumors mostly originate

from the reabsorption of epithelial cells, located mainly in

the mucosal surface and the upper third of the tubular

glands, also called crypts. Colorectal mucosal epithelial

cells form a layer of columnar epithelium with

Fig. 3 Comparison of the

infrared images for a the Blade

of adenocarcinoma tissue

stained by HE, b sample in

CaF2 window, c image obtained

by biochemical FTIR,

d processed image obtained by

artificial neutral network

(ANN), e processed image

obtained by HCA for colorectal

adenocarcinoma tissues, and

f the average spectra obtained

by HCA
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well-preserved architecture. Crypts, these cells are arran-

ged in groups with other types of epithelial cells (goblet

cells, stem cells or stem cells and various types of endo-

crine cells functionally differentiated). The propria of

mucosae, the crypts and muscularis form the membrane

lining the colon [10, 28]. The normal mucosa is shown in

Fig. 1a, where you can observe the cross-sectioned crypts

with epithelial cells (colonocytes), goblet cells, and propria

of mucosa. In the severe dysplastic high grade changes

observed in Fig. 2a, the cell polarity is not possible to

identify, the nuclei are dramatically expanded and acquire

either a rounded or ovaloid shape, and irregular complex

tubules are present [29]. The colorectal adenocarcinomas

originated from epithelial cells and are able to infiltrate the

underlying layers (submucosae, muscularis), colon and

rectum [10]. This is observed in Fig. 3a. Furthermore,

adenocarcinoma shows the typical morphological signs of

malignancy such as atypical histoarchitecture with several

layers of cells exhibiting pleomorphism and infiltration of

the submucosa. Figures 1a, 2a, and 3a clearly show the

complexity of histoarchitecture colorectal tissue.

As noted in Fig. 1d, Table 1 and Fig. 2d, Table 2 and

Fig. 3d, Table 3, the processing of images by ANN showed

regions of adenocarcinoma in the percentage of 0.4, 23.99

and 59.54 in normal tissue, adenoma and adenocarcinoma,

respectively. In terms of statistical classification criteria,

the sensitivity of diagnosis of adenocarcinoma is high,

because all spectra were classified as adenocarcinoma and

the number of false negatives is almost null. Moreover,

there are some false positives, since many spectra of other

spectral classes were classified as adenocarcinoma, as

observed in Fig. 1d, Table 1 and Fig. 2d, Table 2. Thus,

the image of Fig. 3d illustrates an example with high

sensitivity and low specificity of the diagnosis, because this

sample showed a higher percentage of tissues not identi-

fied, about 66.4%. However, generally there is a correlation

between the relatively high gold standard of histopathology

and diagnostic spectra observed in all samples.

The Figs. 1f, 2f, and 3f show the average spectra of

typical infrared absorption of a normal human colorectal

tissue, adenomatous, and adenocarcinoma, respectively, in

the spectral range from 950 to 1,750 cm-1.

The average spectra show bands at *970 cm-1 corre-

sponding to phosphatidylcholine; 1,026 cm-1 to glycogen;

*1,050 cm-1 glycolipid stretching vibration [m (COH)]

and cholesterol; 1,080 cm-1 to phospholipids symmetric

stretching vibration [ms (PO2
-)] and glycogen; 1,234 cm-1

to phospholipids asymmetric stretching vibration [mas

(PO2
-)]; *1,260–1,390 cm-1 to protein symmetric

stretching vibration [ms (COO-)] and cholesterol;

1,444 cm-1to protein deformation vibration [d (CH3)] and

collagen; 1,550 cm-1 to protein (amide II); and

1,650 cm-1 to protein (amide I). The spectrum is domi-

nated by two bands 1,650 and 1,550 cm-1, which are

amide I and amide II, respectively. The amide I stretching

vibration arises from the hydrogen bonded C=O stretch

mode and the amide II vibration arises from a combination

of the C–N stretching and the N–H bending modes. The

intensity differences from normal tissue and cancerous

polyp for the amide II modes were not significant in all

three cases. Important spectral features were found in DNA

and RNA and are associated with protein phosphorylation

and nucleic acids (*970 cm-1), ms PO2
- (*1,080 cm-1),

mas PO2
- (*1,234 cm-1), amide I (*1,650 cm-1), and

amide II (*1,550 cm-1) [30]. The weakest side chain

band of amino acids, peptides and proteins, at 1,444 cm-1,

is with the scissoring and bending vibrations of the CH2

Table 1 Identification and classification of the type of structure in

the image obtained by ANN processing of the FTIR spectra for

normal colorectal tissue

Color Type of structure color Percent

Blue Adenocarcinoma 0.4

Red Crypts 45.19

Dark green Mucin 29.51

Light yellow Propria 9.79

Salmon Necrosis 0.04

Black Unclassified spectra 15.05

Total 99.98

Table 2 Identification and classification of the type of structure in

the image obtained by ANN processing of the FTIR spectra for

colorectal adenoma tissue

Color Type of structure color Percent

Blue Adenocarcinoma 23.99

Red Crypts 9.1

Dark green Mucin 0.51

Black Unclassified spectra 66.4

Total 100

Table 3 Identification and classification of the type of structure in

the image obtained by ANN processing of the FTIR spectra for

adenocarcinoma

Color Type of structure color Percent

Blue Adenocarcinoma 59.54

Red Crypts 5.02

Gray Muscularis mucosae 0.04

Yellow light Propria 0.13

Salmon Necrosis 0.06

Blue light Connective tissue 0.02

Black Unclassified spectra 35.19

Total 100
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and CH3 groups. The absorption peaks of 1,080 and

1,234 cm-1 are due to vibrations of symmetric and

asymmetric stretching of PO2
-, respectively. The absorp-

tion from the normal tissue was higher than that of polyps

and cancer in the whole region of the spectrum and in three

situations. The bands of 1,026 and 1,050 cm-1 infrared

spectrum are responsible for the stretching vibration modes

of the CH2OH groups and CO groups coupled with CO

bending and C–OH of the carbohydrates [31]. Different

spectral patterns were found between normal, polyps, and

cancer in the region of 1,100–950 cm-1 (mS PO2
- nucleic

acids and carbohydrates) with maximum 1,080 and

1052 cm-1, respectively [32].

The intensity of the band 1,050 cm-1 gives an estimate

of the levels of carbohydrates. Carbohydrate levels

between normal and cancer is a greater measure of disease

progression. This may be because the absorption of car-

bohydrates (or your metabolism) is affected tissue with

cancer especially in the later stages of the disease. In the

early stages, the carbohydrate content calculated from the

spectra was smaller than in the polyp and it was reversed in

cancer. It was then possible to establish a strong correlation

of spectral analysis between normal tissues and cancer.

However, the difference between polyps and malignant

tumors were not significant [25]. However, a band in

1,468 cm-1 concerning protein and carbohydrates, coupled

with the asymmetric deformation CH3 [DA (CH3)] and

symmetric deformation CH2 [(Ds CH2)], was seen in the

spectrum of adenocarcinoma tissue.

The main spectral differences were found in the typical

collagen bands at *1,336 and *1,452 cm-1. Interest-

ingly, the spectra obtained from the central part of the

crypts have very characteristic infrared bands as well.

These bands are different from those of collagen and can be

found at 1,080 cm-1. Most of these bands can be attributed

to mucin, a glycoprotein rich in cysteine. Mucin is known

to be present as a precursor in the secretory granules of

goblet cells or mature, after their secretion into the lumen

of the crypts. Due to the heterogeneity of the different

types of mucin, the allocation of bandwidth is a little dif-

ferent in the literature. To give one example, the position of

the peak more prominent mucin was found between 1,035

and 1,050 cm-1 [33]. Therefore, the spectral differences

between the mucin-rich regions of the crypts (gray and

pink spectrum of Figs. 1e and 2e, respectively, and stromal

tissue (blue color spectrum of Fig. 3e) and the differences

between the spectra from the neoplastic parenchyma (color

pink, red, gray, dark green, and dark blue in Figs. 3e and 2e

are rather small. The most relevant spectral changes were

found in bands of PO2
- at *1,080 and *1,234 cm-1. It

was postulated that the intensity of PO2
- band may be

related to the degree of activity of cell division. Given that

cancer cells in the division rate is generally higher than in

precursor cells, the average spectrum of tissue with cancer

tissue must differ from ‘‘normal’’ (benign) due to a lower

mitotic index. The experimental results of this study con-

firm these findings of data from transitional tissue, adeno-

mas, the spectrum dark blue, light blue, red and green

blend in Fig. 3f. Moreover, a progressive decrease in signal

of mucin is also observed (spectrum light blue). This can

be explained by the loss of the initial process arquiterura

typical feature of the colon that starts in these structures.

5 Conclusions

The combination of spectroscopic imaging techniques and

digital image analysis is a powerful new technique that can

be used to re-assemble color images of histological sec-

tions. The results presented in this study demonstrated the

potential use of FTIR imaging in the detection of mor-

phological and biochemical changes that occur in tissues

when they undergo from normal to diseased state. Thus,

our results show the ability of this technique for future

clinical use in histopathology.

There are two important new developments in this

technique. One is to go from single type molecule spec-

troscopy to whole tissue spectroscopy where many differ-

ent types of molecules in huge numbers are included and

sampled over. The other development is that of using

artificial neural networks, previously used for classifying

molecular structures, instead to classify overall features of

areas in tissue samples.

A few things are definitely to be improved. One is the

number of examples in the training set that need to be

enlarged. This problem of using too small sample sets can

be seen in the uneven distribution or size of the percentage

numbers in the three Tables 1, 2 and 3. In future, use of

ANN for classifying tissue data, one should make use of

the frequency distribution spectra for the analysis of

chemical abundances, for example, how much is present in

a certain tissue sample of the chemical compound of

phosphor lipids or glycogen etc., based from an analysis of

the height of peaks in the spectra. In addition, first principle

calculations of the electronic absorption and fluorescence

spectra in a variety of environments have now appeared

[34, 35], including one in this issue of TCA by Pomogaev

et al. [36]. In these works using the elongation method

developed by Imamura et al. [37], and extensions [38], one

is now able to simulate both the ground and excited elec-

tronic state structures and properties of large biomolecules,

including their infrared, Raman, electronic absorption, and

fluorescence spectra. The next great challenge is now to

move from solution, to heterogeneous media like the cell,

intracellular media, but in/under homeostatic conditions

and in/under stress and denaturing condition, which in
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many cases lead to diseases: cancer being the one which we

have addressed in this work. Note that Professor Imamura

started working in this field with semi-empirical methods

and now has progressed to using the latest state of the art

wave function theory (MP2 and CASPT2) and density

functional theory (GGAs, hybrid, meta hybrid and finally

LC- and LCgau-KS-DFT methods [39–42]) with already or

in works in progress to treat large biomolecules, first in the

isolated state, then in aqueous solution. The last big chal-

lenge will now to treat these molecules and their interac-

tions and functions under biologically relevant conditions,

at relatively high concentrations, at various pH values,

ionic strengths, at body temperatures and atmospheric

pressure.
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